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A. Introduction
This document provides more explanation of significant

issues that have not been addressed in the primary content.
Additionally, we present a range of experiments and out-
comes obtained from our system.

B. Deep Phase Feature
Expressive Power Phase P is a fundamental component
in our system, which we use to express the temporal align-
ment among the motion frames. In our system, it’s formed
by multi-dimensional periodic parameters from the neural
FFT layer. Despite its efficacy, some individuals may ques-
tion whether non-periodic movements can be represented
through the phase. To address this, we conducted an ex-
periment using the Phase Network (PAE) on two distinct
movements, one involving dancing and another involving
walking.

Figure 1. Here we show the periodic parameters extracted from
two different motions. The left is from the dancing, and the right
is from the walking.

Figure 2 depicts an intriguing observation from the
phase feature. Despite dancing appearing more complex
than walking at an intuitive level, our extracted feature high-
lights that the only difference between the two movements
is the larger amplitude value associated with dancing due
to its faster motion. This phenomenon can be attributed to
the real-world motion of walking, which although appear-
ing stable, contains a significant amount of high-frequency
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differences. Consequently, we utilize multi-dimensional pe-
riodic parameters to represent the entirety of the dataset,
instead of relying on a simple pattern like foot contact or
hand waving. This approach enables us to accurately ex-
press both periodic and non-periodic motions, leading to
more versatile and practical applications.

In addition, we have employed the T-SNE dimensional
reduction method to cluster the periodic parameters ex-
tracted from a motion stylization dataset [3]. The re-
sults demonstrate that distinct motion styles are identifiable
based on their corresponding phase features. This obser-
vation serves as compelling evidence that similar motions
share similar phase features. Thus, by extending the learned
phase features from visible frames to invisible frames, our
method can effectively produce consistent and plausible
movements.

Figure 2. The 2D cluster for the T-SNE of phase parameters which
are extracted from different motion clips. The same color repre-
sents the clips from the same style of motion.



Unidirectionality The concept of unidirectionality is a
main aspect of our system, as it allows us to ensure that
movements remain in a consistent direction. This is accom-
plished through the clockwise rotation of the phase vec-
tor, as outlined in Equation 10, which serves as the pri-
mary strategy for updating the phase value. Additionally,
the frequency parameter is maintained as positive and accu-
mulative, creating a cyclic manner that preserves the one-
directional property of the motion.

To provide further insight, we can visualize the 2D PCA
embedding of the learned phase vector, as illustrated in Fig-
ure 3. In this representation, each data point is located on
a cycle wave, indicating that motion generated under such
conditions will maintain the unidirectional property. By
enforcing this feature through our system, we can gener-
ate realistic and natural-looking movements with consistent
directionality, enabling a broad range of practical applica-
tions.

Figure 3. Here we show the 2D PCA embedding of phase vector
from different motions. The colors identify the motion, and the
arrows identify the direction of updating.

Generalization Training a model using the phase-
amplitude encoding (PAE) approach on a large dataset can
be computationally expensive due to the neural FFT oper-
ation. To overcome this issue, we train the PAE network
on a subset (CMU) and then apply it to the entire dataset
(AMASS [2]). Furthermore, we conduct an experiment to
demonstrate the ability of the trained PAE model to inter-
polate and extrapolate across different motion categories,
indicating its capacity to adapt easily to unseen motion data
and produce periodic parameters.

To evaluate the performance of our approach, we parti-
tioned the Lafan motion dataset [1] into subsets A and B
based on different motion categories and conducted three
training experiments, as presented in Table 1. The recon-
struction error mean and maximum values remained within
a standard range, indicating reliable performance. More-
over, we tested our approach by removing half of the data

Method Train Dataset Test Dataset Mean Error Max Error

PAE 1
2 ×A+ 1

2 ×B rest of A, B 0.1286 0.2951
PAE A B 0.1546 0.3196
PAE B A 0.1481 0.3622

Table 1. Comparison of different training data splitting strategies.
The first one use a half and A and B, then test the model on the
rest of A and B; Others use one of them to do the training and test
on another one.

from each motion category and evaluating on the remaining
data, which demonstrated the ability of our method to per-
form interpolation effectively. Furthermore, testing on un-
known motion categories revealed no significant decrease
in network performance, demonstrating the ability of our
model to extrapolate to new, unseen data. This suggests that
the PAE model trained on the subset can accurately capture
the entire dataset.

C. Network Details
C.1. PAE network

The periodic autoencoder (PAE) comprises three pri-
mary components: the encoder, feature transformers, and
decoder. The encoder comprises two convolutional layers
with a kernel size of 31 and a padding size of 15, operat-
ing solely on the channel dimension to obtain the embed-
ding with 8 channels. Subsequently, the periodic parame-
ters are extracted using previously described methods, in-
cluding FFT and 2-argument arctangent. In contrast, the
decoder also comprises two convolutional layers, but with
the output channel number changed to the original dimen-
sion. Batch normalization and tanh activation functions are
applied to each convolutional layer except the last one.

To train the PAE model, we employed the CMU sub-
set and subsequently applied it to the entire AMASS
dataset [2]. Training the model for 200 epochs on an
RTX3090 graphics card takes approximately 5 hours.

C.2. Prior network

The system architecture used in the prior network is sim-
ilar to that of HuMoR [5]. The prior and encoder are fully
connected using 5 MLPs with ReLU activations and group
normalizations, which operate on the input data into 48-
dimensional latent by a hidden size of 1024. To capture the
periodic nature of our phase feature, we incorporate Siren-
MLP as an activation layer in the decoder network, inspired
by previous work on periodic activation and NeRF [6, 4].
The decoder comprises of 4 SirenMLPs with sine activation
of 60 sine factors, which predict the next frame data. We
initialize all the weights of SirenMLP and the first layer of
SirenMLP separately, as introduced in [6]. This choice im-
proves reconstruction performance, as demonstrated in our
experiments. Additionally, we introduce skip connections



from the phase variable to each layer of the network, en-
hancing the influence of the phase feature. By employing
these techniques, we can more effectively model the peri-
odicity inherent in the motion data, resulting in improved
performance in our motion synthesis task.

Data Processing We use the following subset from
AMASS dataset in the training: CMU, MPI Limits, Total-
Capture, Eyes Japan, KIT, BMLrub, BMLmovi, EKUT, and
ACCAD. The data processing phase involved the selection
of motion clips from these subsets that were longer than
two seconds, which were used to train the prior network.
Subsequently, downsampling of the frames per second was
performed for each subset to 30 Hz, and padding of 0.5 sec-
onds was added to the beginning and ending frames. The
PAE network was then utilized to extract the phase feature
for the entire sequence. To eliminate low-dynamic move-
ments, the first and last 10% frames were dropped, as well
as all motion involving interaction with the terrain. A 4cm
threshold was used to detect and compute the ground truth
of the contact label, resulting in 10k motion sequences for
final training

Training Strategy In line with the original MotionVAE
approach, scheduled sampling was used during the training
phase to increase the robustness of the noise input. For net-
work forwarding, a 10 frames subsequence was taken, and
there were three stages wherein the prediction of xt was
based on either the ground truth of xt−1 or predicted x′

t−1

To enhance the robustness of the system, the ground truth
was fed as input at the beginning, while predicted x′

t−1 was
fed as input later in the training process to enforce corre-
lated results.

Training Time The model was trained for 200 epochs
over approximately four days, using a single Tesla V100
16GB GPU.

D. Optimization Details
As introduced in the paper, there are three stages for test-

time optimization. We describe them one by one as follows.

D.1. Stage 1: SMPL Alignment

The primary objective of the first stage is to obtain an ini-
tial prediction of the SMPL pose sequence with constraints
of observation alignment. Similar to other approaches, the
observation term Edata is employed as the primary energy
term to ensure the prediction is aligned with the given ob-
servations. Additionally, a smooth term is utilized to en-
hance temporal coherence. More details, 30 iterations are
dedicated to optimizing the root translation and orientation,
followed by 70 iterations to optimize the full-body pose and

shape. The optimization process in this stage adheres to the
details outlined in the HuMoR paper [5].

D.2. Stage 2: Phase&Latent Initialization

In this stage, the initial pose sequence is used to gener-
ate joint velocity, which is subsequently fed into our PAE
model to produce initial phase features. To compute the
phase with the same frame number, the sequence is padded
accordingly. Due to unstable global orientation, the ini-
tial production of the PAE model results in high-frequency
noise. To mitigate this, the phase curve is smoothed and sta-
bilized using Eq. 10, and the process is repeated five times.

Furthermore, the initial z latent sequence is also gener-
ated in this stage. This is achieved by providing a pair of
frames (the previous and the next) as input to the Encoder.

D.3. Stage 3: Optimization with Prior

In contrast to the previous stages, stage 3 presents sig-
nificant challenges in practice, such as encountering local
minima and diverging optimization. Therefore, we address
this issue by dividing the entire sequence into sub-clips with
90 frames (3 seconds) and optimizing each clip separately.
Also, we will use the last frame from the previous clip as
the initial pose in the next clip for optimization of a long
sequence to ensure consistent.

Using the initial pose x0, and sequences of z and phase
P , we can generate a sequence of SMPL poses autoregres-
sively, frame by frame. The optimization variable in this
stage consists of x0 and the sequence of z. The energy term
comprises four modules: (1) Plausibility, which refers to
the negative log-likelihood for the motion prior term; (2)
Alignment, which measures the distance between the pre-
dicted and observed poses; (3) Phase, which quantifies the
difference between the predicted and target phases; and (4)
Regularization, which aims to optimize the motion to be
smooth and consistent.

argmin
z1:T−1,β,g

(λobsEobs + λpriorEprior

+λregEreg + λphaseEphase)
(1)

D.4. Term Weights in Optimization

In different tasks, we carefully design the weights for
different optimization terms. The input data is more re-
liable for the pose estimation from space 3d joint input,
so we emphasize the energy on the 3d joint alignment.
Also, the ground won’t be predicted in these tasks. In the
video2motion task, because the detected 2d pose includes
noises, we should emphasize other energy terms except the
2d joint alignment loss. The weight values are listed in Ta-
ble 2.



Task λ3d
obs λ2d

obs λprior λreg λphase

Sparse 3D Fitting 1.0 - 5e−4 0.1 0.1
Motion in-between 1.0 - 1e−3 0.1 0.2
3D Denoising 0.5 - 1e−3 1 0.2
Video2Motion - 1e−3 0.05 2 0.4

Table 2. The weight of different energy terms in the test-time op-
timization.

D.5. Training tricks

In practical implementation, we employ a specific opti-
mization strategy for each clip. In the first 30 iterations, we
optimize the first 15 frames to enhance the autoregressive
updating process based on the initial state x0 and P0. This
initial prediction plays a critical role in the entire sequence
prediction. Afterward, we fix x0 and P0 and optimize only
z1:T for 25 iterations to align the full movements. Finally,
we optimize all parameters for the remaining 15 iterations
to obtain the final results. During each iteration, we refine
the phase feature again. For optimization of a 90 frames
sequence, it will take 20 minutes with RTX 3090 graphic
card.

E: Extended Evaluation
E.1. Qualitative for Occlusions

Here we do more experiments to explore how robust our
method is in different scenarios. With AMASS dataset, we
show the results by using different occlusion heights in the
upper-body experiment, and different time steps in the tem-
poral occluded experiment.

Figure 4. Here we show the different performances when we apply
different occlusion parameters on the upper-body visible experi-
ment and temporal occlusion experiments.

The positional reconstruction error is shown in Figure 4.
By increasing the strength of occlusions, our system is able
to keep the best performance and also show superiority and
robustness under heavy occlusion environments.

F. More Results
In this section, we show more comparisons in two parts:

1) Estimation from partial 3D and 2) Estimation from RGB

VPoser-T            HuMoR                 Our                Input/GT       HuMoR                       Our                        Input/GT

Figure 5. Here we show the results from upper body reconstruction
experiments.

videos. Also, we encourage to review our supplementary
video to appreciate the improvement of our method.



VPoser-T            HuMoR                 Our                Input/GT       HuMoR                       Our                        Input/GT
Figure 6. Here we show the results from temporal occlusion ex-
periments.

      HuMoR                                     Our                                  Input/GTFigure 7. Here we show the different performances from the
video2motion experiment. Middle: HuMoR, right: Ours



Figure 8. Here we show more video2motion results.
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