PhaseMP: Robust 3D Pose Estimation via Phase-conditioned Human Motion Prior

¹The University of Hong Kong, ²Meta, ³Seoul National University

- Temporal coherence plays an important role to produce realistic human motion.
- Simple interpolation is commonly used to refine motion jitters - but it doesn't work well for long-term and heavy-occluded frames.
- A periodic feature, called Phase, shows big potential to improve motion quality by describing motion in multi-dimensional sinusoidal space.

Contribution

- * We propose a novel motion prior based on the phase manifold for synthesizing feasible motions for various downstream tasks.
- A new optimization framework incorporating phase feature energy, which can work robustly for many challenging scenarios where the observation is incomplete or ambiguous in temporal and spatial domains

Phase: A multi-dimensional sinusoidal vector Given a windows of 2 seconds motion data, we take the joint velocity $X_t \in \mathbb{R}^{3 \times J \times N}$ as input, followed by differentiable FFT layer:

$$A_t, B_t, F_t = \text{FFT}(\text{Conv}(X_t)) \tag{1}$$

Then the Phase feature P_t is defined with:

$$P_{t} = [p_{t}, F_{t}, A_{t}], \quad p_{t} = (A_{t} \cdot \sin(2\pi \cdot S_{t}), A_{t} \cdot \cos(2\pi \cdot S_{t})) \quad (2)$$

Prior: A autoregressive generation network

Model the transition between two frames $[x_{t-1}, x_t]$, with condition variant z and phase P

$$\Delta x, \Delta P, c_t = G(x_{t-1}, z_{t-1}, P_{t-1})$$
(3)

$$\hat{x}_t = x_{t-1} \oplus \Delta x, \hat{P}_t = P_{t-1} + \Delta P \tag{4}$$

Then a sequence of poses can be generated.

Left: Phase feature extraction. The key module is a periodic auto-encoder equipped with convolution and FFT (Fast Fourier Transform) layers in its intermediate structure, allowing it to compute embeddings in the frequency domain given joint velocities as inputs.

Right: Conditional human motion prior. The pose in the next frame is predicted by sampling from a Gaussian distribution produced by the prior model. In the **training** stage, the prior model R is trained with posterior E by aligning their output distributions, without the input of paired frames. Thus, the prior model only predicts solely at **inference** time by only considering the previous frame. Note that we used a sine activation layer in the decoder.

Given partial observations, such as a 2D landmark sequence or a partial 3D joint sequence, we estimate the original 3D pose sequence through optimization.

Stage 1: Produce initial guess of [body pose parameter $\hat{x}_{0,T}$, environment parameters].

Stage 2: Produce the initial [phase feature $P_{1:T}$, variant feature $z_{1:T}$] using the encoder E. Then produce a target phase curve based on our cyclic updating and robust blending strategy.

$$p_t = \bar{A}_t \cdot I(\alpha_P)(R(\theta) \cdot p_{t-1}, (p_{t-1} + \Delta p)), \quad \theta = \Delta t \cdot 2\pi \cdot \bar{F}_t$$
(5)

Where the \bar{A}_t and \bar{F}_t is dynamic blended based on the confidence value from observation.

Stage 3: Refine the initial data with the following energy:

 $\operatorname{argmin}_{z_{1:T-1},\beta}(E_o$

Mingyi Shi¹, Sebastian Starke², Yuting Ye², Taku Komura¹, Jungdam Won³

$$bbs + E_{prior} + E_{reg} + E_{phase}$$

Experiments

We show the evaluation on following tasks: (i) motion generation (2) motion estimation from sparse observation.

	per-fra	ame reconst	sampling (10s)			
Model	Contact ↑	MPJPE↓	PJPE-std↓	Contact ↑	ADE \downarrow	$FDE\downarrow$
HuMoR(MLP, w/o Phase)	0.9770	0.022	0.051	0.8216	45.43	62.47
Ours(MLP, with Phase)	0.9764	0.020	0.040	0.8525	39.48	54.96
Ours(SirenMLP, w/o Phase)	0.9788	0.019	0.031	0.8577	35.47	49.95
Ours(SirenMLP, with Phase)	0.9799	0.017	0.021	0.8662	42.12	49.47

Table 1. Comparison results on AMASS dataset reconstruction

		fitting (3s)								
Method	Input Conditions	Vis	Occ	All	Contact \uparrow	Accel	P-Frep	P-Dis		
VPoser-t	$J_{height} > 0.9$	0.67	20.76	9.22		5.71	16.77%	2.28		
MVAE		2.39	19.15	9.52	8 	7.12	3.15%	0.30		
HuMoR		1.46	17.40	8.24	0.89	5.38	3.31%	0.26		
Ours		3.94	15.63	8.31	0.89	4.58	3.04%	0.28		
HuMoR	$J_{ ext{end}_ ext{effectors}}$	3.05	4.12	3.83	0.96	4.91	0.31%	1.03		
Ours		3.16	4.07	3.79	0.97	4.88	0.28%	1.02		
HuMoR	10 frames interval	5.56	7.76	7.49	0.91	7.72	1.57%	1.90		
Ours		3.19	4.92	4.33	0.93	6.33	1.31%	1.72		

Table 2. Comparison results on estimation from different input conditions

(6)

