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a b s t r a c t

Understanding semantic similarity among images is the core of a wide range of computer graphics and
computer vision applications. However, the visual context of images is often ambiguous as images that
can be perceived with emphasis on different attributes. In this paper, we present a method for learning
the semantic visual similarity among images, inferring their latent attributes and embedding them into
multi-spaces corresponding to each latent attribute. We consider the multi-embedding problem as an
optimization function that evaluates the embedded distances with respect to qualitative crowdsourced
clusterings. The key idea of our approach is to collect and embed qualitative pairwise tuples that share
the same attributes in clusters. To ensure similarity attribute sharing among multiple measures, image
classification clusters are presented to, and solved by users. The collected image clusters are then
converted into groups of tuples, which are fed into our group optimization algorithm that jointly infers
the attribute similarity and multi-attribute embedding. Our multi-attribute embedding allows retrieving
similar objects in different attribute spaces. Experimental results show that our approach outperforms
state-of-the-art multi-embedding approaches on various datasets, and demonstrate the usage of the
multi-attribute embedding in image retrieval application.

© 2018 Zhejiang University and Zhejiang University Press. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Understanding semantic similarity among images is the core of
a wide range of computer graphics and computer vision applica-
tions, especially in image retrieval (Douze et al., 2011). However,
it is a particularly challenging task as it reflects how humans per-
ceive images, a task that cannot be inferred by low-level analysis.
Supervised learning is a commonmeans of studying such semantic
problem, for which, the ground truth of how humans perceive
similarity among images is critical.

However, the semantic context of images is often ambiguous as
images that can be perceivedwith emphasis on different attributes
(see Fig. 1). One example out of many is the separation of catego-
rization and style (e.g., color, light, scene type, etc..). One can claim
that two images are similar due to their categorization and another
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may find two images of similar categorization different due to
their style. Similarities between the images may be measured in
multiple attributes, which can be contradictory to each other.

Humans cannot state a consistent meaningful measure of se-
mantic similarity for a large batch of images. Therefore, anno-
tations about semantic similarity collected by crowd queries are
qualitative in nature. In addition, they only contain a partial viewof
a whole dataset. To consolidate the partial and possibly conflicting
views, the collected qualitative data is often embedded into a
common Euclidean space that hosts all the images, such that the
quantitative metric distances among images reflect the aggregate
of the qualitative measures as much as possible (Kleiman et al.,
2016; Tamuz et al., 2011). However, since semantic similarity may
reflect various attributes, one embedding space cannot represent
well multiple distances among images. A few existing works ad-
dress such contradictions by disentangling similarities in multiple
attribute spaces, based on assuming latent embedding distribu-
tions (Amid and Ukkonen, 2015), explicitly specifying attributes
(Veit et al., 2017), or learning similarities along with worker and
context information (ho Kim et al., 2018).
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Fig. 1. Often the semantics of images are ambiguous. It is unclear whether images in the second row are more similar to the top or bottom row. Images in the top row have
similar category to the second row, while images in the bottom row are similar in style (e.g., color, pose, rendering and light).

In this paper, we present an unsupervised method for multi-
attribute embedding, which disentangles similarity annotations
based on their latent attributes and embeds them into multiple
corresponding embedding spaces. The distances in each embed-
ding space well represent object similarity under the correspond-
ing attribute. The task is challenging since it encapsulates a two-
fold problem. First, the semantic similarity among images has no
clear quantitativemeasure and thus, itmust be deduced fromqual-
itative measures. Second, the attribute that each crowd member
relies on is unknown.

To addressed the challenges, we collect qualitative semantic
similarities from crowdsourced clustering queries, and embed im-
ages into multiple spaces by optimizing an objective function that
evaluates the embedded distances with respect to the qualitative
similarities. A critical issue in the optimization is to infer which
attribute is used in answering a particular query. Thus, each query
is associated with an additional variable on top of the unknown
coordinates of the embedded elements. The key idea of our ap-
proach is to collect and embed qualitative measures in groups. The
grouped measures necessarily share the same attributes, which
significantly reduces the number of unknown variables.

More specifically, the task we use is designed as classifying a
collection of images into clusters (see Fig. 2). This necessarily leads
the user to use a single attribute in providing a series of qualitative
measures on the collection of images. Each clustering annotation
is then converted into a group of T (i, j, θ )-like tuples, where θ
indicates whether image Oi is similar to image Oj (θ = 1) or not
(θ = 0), and fed into our embedding optimization. As we shall
show, the optimization with tuple groups requires less variables,
leading to higher quality embeddings.

Besides, we further explore the usage ofmulti-attribute embed-
ding in image retrieval by leveraging recent progress in the field of
Deep Neural Networks (Krizhevsky et al., 2012). A CNN model is
presented to map an image into the multi-attribute embeddings,
so that it lies near those of other images containing similar objects
in different attribute spaces.

We evaluate our multi-attribute embedding approach on vari-
ous synthetic and crowdsourcing datasets, and show that it outper-
forms the state-of-the-art multi-embedding approaches. We also
show that our method can support intuitive image retrieval by
turning different attributes on and off .

2. Related work

Together with the availability of massive data, crowdsourc-
ing allows supervised learning to be performed in large scale

(Russakovsky et al., 2015), providing an efficient way to measure
human perception in various contexts, such as product design
(Bell and Bala, 2015), illustration style (Garces et al., 2014), font
similarity (O’Donovan et al., 2014) and entity matching (Wang et
al., 2012). For a recent comprehensive study of crowdsourcing,
please refer to Chittilappilly et al. (2016).

Single embedding metric learning. The problem of consolidating
numerous instances of information, which is often quantitative,
into a single consistent space is referred to as metric learning,
and is widely studied (Globerson and Roweis, 2005; Wang et al.,
2011; Xie and Xing, 2013; Xing et al., 2002). Quantifying human
similarity perception is challenging since it is often qualitative and
relative. A number of metric learning methods focus on recovering
a single embedding space from such relative similarity measures,
in the form of paired comparisons (Agarwal et al., 2007) or relative
triplets (Tamuz et al., 2011). Some recent methods emphasize the
importance of qualitativemeasures from crowd clustering (Gomes
et al., 2011; Wilber et al., 2014), which provide more information
compared to pairs or triplets of images. Kleiman et al. (2016) lever-
aged crowd clustering to learn semantic similarity. In addition,
some methods learn single embedding similarity metric by com-
bining both quantitative representation and qualitative measures.
For example, Li et al. (2018) proposed a continuous dissimilarity
metric by leveraging quantitative deep neural features and quali-
tative inter-class measures.

However, such methods often assume that similarity between
two objects can be depicted by a single scalar value, and thus
a single embedding space can capture similarity among a set of
objects. Similarity measures, which might be from different at-
tributes, are ‘‘fused’’ into one embedding space. Instead, we model
similarity between two objects as a multi-dimension vector, i.e.,
two objectsmay have different degree of similarity under different
attributes. We propose to ‘‘disentangle’’ similarities and embed
them in multiple embeddings by their attributes, which can be
separately explored.

Multi-attribute embedding. Learning multiple embeddings in
general cases has not been explored much, even though it is often
essential for various human-computational applications. Recent
research in natural language processing has proposed a number of
models in which words are associated with several corresponding
embeddings based onhumanword similarity judgments (Li and Ju-
rafsky, 2015; Liu et al., 2015; Wu and Giles, 2015). However, these
models use additional information such as local co-occurrence and
sentence context which are not available in the general case.
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Fig. 2. A collection of images are classified into clusters by crowd users. Different clusterings reflect similarity in different attributes, which may be contradictory to each
other. For example, cars may be clustered by either considering the rendering style shown in the leftmost column, or car type as shown in the rightmost column.

Amid and Ukkonen (2015) proposed a multi-view triplet em-
bedding algorithm (MVTE) to reveal multiple embeddings bymax-
imizing the sumof log-probabilities of triplet-embeddingmapping
over all triplets. The triplet-embedding mapping is defined as an
heuristic indicator function of the embedding based ondistribution
assumptions of the underlying embedding spaces. The method
alternates between optimizing the embeddings with fixed indica-
tors and deriving the indicators from embeddings. Unlike MVTE,
we do not make any distribution assumption of the underlying
embedding spaces. Instead, we introduce a set of attribute inference
variables that represent the mapping probabilities.

A deep model to learn multi-attribute similarity is proposed
by Veit et al. (2017). In this work, multi-attribute embeddings are
learned directly from image features through a supervised way:
the network is provided with a given set of triplets and their
corresponding attribute. Different to this work, none of our data is
labeled with accurate attribute. The gist of our work is to estimate
which similarity triplet is associated with each attribute, and at
the same time generate multi-attribute embeddings that fit each
of these unknown attributes.

ho Kim et al. (2018) introduced an end-to-end deep context
embedding networks (CENs) to learn multi-attribute image em-
beddings by modeling crowd worker bias and image context. They
collect image similarity annotations from crowd clusterings, as
well as detailed worker and context information. Images in each
cluster are considered as similar ones, while others are dissimilar
ones. Semantic attributes for embeddings are modeled and en-
coded from worker annotation behavior and clustering context.
Rather than learning attributes from workers and context, we
directly optimize our attribute inference variables simultaneously
with the embedding variables, to model complex multi-attribute
embedding relationships.

3. Group-based crowd queries

The design of annotation task is the key for gathering infor-
mation from a crowd. Inspired by Kleiman et al. (2016), we ask
workers to perform crowd clusterings. A set of images is presented
to each worker, who is requested to classify the images into multi-
ple groups. Note that this classification task is cost-effective since
it can yield a large amount of similarity annotations from these
clusters. More importantly, such a classification naturally leads
the worker to use a single similarity attribute while performing
the task. Thus, all the derived pairwise similarity annotations can
be assigned to the same embedding space, i.e., they are grouped.

The group queries greatly reduce the amount of affiliations to be
inferred, as instead of inferring the affiliation of each triplet, only a
single affiliation for each group is required.

Formally, in a query, we ask a worker to classify N images
into at most B bins/clusters {Sc}. The aforementioned T (i, j, k)-
like triplets can be derived from the clusters as {T (i, j, k)}, where,
Oi,Oj ∈ Sx,Ok ∈ Sy and x ̸= y, i.e., two images from the
same cluster are considered to be more similar than the third one
from another cluster. In practice, we chose to use a simpler repre-
sentation of qualitative similarities—T (i, j, θ )-like pairwise tuples.
These tuples can be derived from the clusters {Sc} by producing a
tuple {T (i, j, 1)} where Oi,Oj ∈ Sx and a tuple {T (i, j, 0)} where
Oi ∈ Sx,Oj ∈ Sy. In other words, two images are considered
to be similar/dissimilar if they are from same/different clusters.
We denote pairwise tuples derived from query q ∈ Q as T q

=

{T (i, j, θ )}. In the next section, we present a group optimization
algorithm that takes grouped tuples T (i, j, θ ) as input.

4. Multi-attribute embedding

As discussed above, a multitude of attributes cannot be cap-
tured in a consistent way within a single embedding space. Thus,
we compute multiple embedding spaces E = {Es} dedicated to
different similarity attributes.

To associate grouped T (i, j, θ )-tuples with appropriate embed-
ding spaces, there are two sets of variables to solve. One set
contains the attribute inference variables α

q
s , which indicates the

likelihood that query q is based on the sth similarity attribute. The
other set contains the coordinates of the images in each embed-
ding.

Let us denote the coordinates of image O∗ in embedding Es as
O∗,s. We use contrastive loss (Chopra et al., 2005) to model how
well tuple T (i, j, θ ) fits in the sth embedding Es:

L(T (i, j, θ ), Es) = θ × d(Oi,s,Oj,s)2

+ (1 − θ ) × max(0,m − d(Oi,s,Oj,s))2,
(1)

where d(Oi,s,Oj,s) = ∥Oi,s −Oj,s∥2 andm is a margin for embedding
dissimilar images apart from each other.

The loss of associating grouped tuples T q with embedding Es is
then:

L(T q, Es) =

∑
T (i,j,θ )∈T q

L(T (i, j, θ ), Es). (2)
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Intuitively, L(T q, Es) is small when the tuples T q from query q
are associated with the embedding space that corresponds to the
similarity attribute used by query q. However, it is unknownwhich
embedding space is the best fit. We introduce attribute inference
variables α

q
s to address this problem. Formally, the aggregate loss

of grouped tuples T q with respect to multiple embeddings {Es} is:

L(T q) =

∑
Es∈E

αq
s × L(T q, Es),

|E|∑
s=1

αq
s = 1, αq

s > 0. (3)

An inference variable α
q
s can be interpreted as the probability

that query q is based on the sth similarity attribute. As the opti-
mization progresses, α

q
s gradually converge to associate query q

with a specific embedding.
Finally, we sum the loss for all queries, and the optimization can

be written as:

argmin
α
q
s , O∗,s

∑
q∈Q

∑
Es∈E

αq
s ×

∑
T (i,j,θ )∈T q

L(T (i, j, θ ), Es), (4)

where
∑

sα
q
s = 1, and α

q
s > 0. Note that there is one attribute

inference variable α
q
s per query per embedding, i.e., their total

number is |Q|× |E|. The loss function is differentiable with respect
to variables α

q
s and O∗,s, thus it can be optimized with gradient

descent based optimizers. We solve these two sets of variables
simultaneously.

Initialization. If the embedding spaces are initialized with the
same coordinates, or symmetrically with respect to the queries,
the gradients are exactly the same. Thus, the gradient descent op-
timization updates them in the same way, which leads to identical
embeddings. To avoid this, we use random initialization for the
embedding coordinates. It can be assumed that the initial random
embeddings are not equivalent or symmetric to one another with
respect to the queries. However, in the beginning, such asymmetry
is probably weak, i.e., there is no strong tendency for a query
to belong to a specific embedding. The asymmetry is gradually
reinforced by our algorithm, and the embeddings evolve into quite
different spaces corresponding tomulti-attributes.We initializeα

q
s

to 1
|E|

, indicating that the queries have the same probability to be
based on any of the unknown attributes. For specific applications,
where relevant prior information can be leveraged, they can also
be initialized with bias for different attributes.

5. Algorithm analysis

Two distinctive features of our algorithm are the group opti-
mization and the use of attribute inference variables. We study
their effectiveness by comparison to alternatives approaches. In-
stead of using subjective crowdsourcing data, we leverage objec-
tive synthetic data as ground truth to analyze our algorithm.

Analysis settings. We introduce a synthetic ‘‘AOB’’ dataset, which
contains 214 points (|O∗| = 214), distributed to form ‘‘A’’, ‘‘O’’,
and ‘‘B’’utterfly shapes in the ground truth embeddings Egt =

{EgtA, EgtO, EgtB} (see Fig. 3). The points are indexed sequentially
according to point coordinates in EgtA and EgtB, so the embeddings
are different but not completely independent. In EgtO, the points
are indexed randomly, so that the embedding is completely inde-
pendent of the other two. This way, the dataset simulates both
dependent and independent attributes. We color the points by
smoothly mapping their indices into continuous colors, i.e., points
with neighboring indices have similar colors.

We generate |Q|(= 600) random queries from each ground
truth embedding and attempt to recover them by simulated query
answers. Each query contains N(= 20) randomly sampled objects.
Note that the random sampling strategy does not use any prior
knowledge of the embeddings, to simulate actual crowdsourcing

scenario where the ground truth is unknown. The answers are
generated using K-means clustering of the samples, with B(= 5)
seeds. The clustering is based on the position of objects in one of the
embeddings (selected in random), to simulate users query answers
which are based on a single unknown attribute. 114,000 tuples are
inferred from the clustering query answers of each embedding.

We evaluate the quality of recovered embeddings E based
on the Normalized Discounted Cumulative Gain (NDCG) metric
(Järvelin and Kekäläinen, 2000). NDCG is widely used in evaluating
information retrieval relevance (Burges et al., 2005; Clarke et al.,
2008), and suitable for evaluating the recovery quality of the simi-
larity based embedding spaces. More specifically, we first compute
K-nearest (K = 0.1 × |O∗|) neighbors for each point in each
recovered embedding in E and its corresponding embedding2 in
Egt , then with the corresponding ranked lists, NDCG are computed
and averaged over all points.

5.1. Group optimization

A common approach for computing multi-embeddings is to
collect and optimize over individual tuples. In this approach, each
tuple may be based on a different attribute, thus the optimization
has to infer attributes for each tuple individually. Formally, the
non-group optimization problem can be written as:

argmin
α
(i,j,θ )
s , O∗,s

∑
Es∈E

∑
T (i,j,θ )∈T

α(i,j,θ )
s × L(T (i, j, θ ), Es), (5)

where α
(i,j,θ )
s is the attribute inference variable indicating the prob-

ability of associating tuple T (i, j, θ ) ∈ T with embedding Es, and∑
sα

(i,j,θ )
s = 1, andα

(i,j,θ )
s > 0. The tuples can either be collected us-

ing single-tuple queries or inferred froma clustering query. Clearly,
this formulation leads to many more variables to optimize than
the group optimization, since the number of attribute inference
variables is proportional to the number of tuples.

We apply group and non-group optimizations on AOB dataset,
and show a visual comparison in Fig. 3. Note that in both optimiza-
tions the embeddings are computed from the same random initial-
ization. As can be seen in the figure, group optimization leads to a
significantly better recovery of the ground truth embeddings than
the non-group version. The group optimization (top row) produces
distinct embeddings that resemble the ground truth, while the
non-group optimization (bottom row) produces noisy embeddings
that are quite similar to each other. The recovery quality is also
evident in the color coding of the results. A high quality recovery
should present color coding which is similar to the ground truth.
While this is true for the group optimization results, in the non-
group optimization results, the color coding of all embeddings is
similar only to the ‘‘A’’ and butterfly shapes and not to the ‘‘O’’
shape. This suggests that the attributes are not separated correctly,
as all embeddings are influenced by tuples that represent similar
color coding.

We also quantitatively measure the quality of the multi-attri
bute embedding recovery. At each iteration, we compute the av-
erage NDCG of the three embedding results, with group and non-
group optimization. As can be seen in Fig. 4, the group optimization
converges much faster to more accurate embeddings.

2 In case of poor recovery, the correspondence between E and Egt is not clear
(see Fig. 3 middle lower). In this case, we compute NDCG for all possible mappings
between them, and pick the onewith the highest NDCG as themost likelymapping.
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Fig. 3. A visual comparison of embedding results w/wo group optimization at iteration 5, 10, 20, 30, 60 and 100. Both methods are optimized from the same initialization,
but group optimization converges faster.

Fig. 4. A quantitative comparison of Fig. 3 results using NDCGmetric. It shows that
the group optimization converges faster to more accurate embeddings.

Fig. 5. Affiliation uncertainty curve during recovery of ‘‘AO’’ embeddings, with and
without group optimization.

5.2. Attribute inference variables

As discussed above, the optimization startswith random initial-
ization of multiple embedding spaces, and progressively evolves
to differentiate between distinct attributes. We examine this phe-
nomenon in the task of recovering EgtA and EgtO from simulated
queries and answers, with an affiliation uncertainty metric:

U =
1

|Q|
∗

∑
q∈Q

min(αq
1, α

q
2)

max(αq
1, α

q
2)

, (6)

where α
q
1 and α

q
2 are the attribute inference variables associated

with EA and EO in query q. As shown in Fig. 5, in the beginning,
U is high, as the two initial embeddings are still in chaos state
and it is not significant whether a query is associated with EA or
EO. However, since EA and EO are not likely to be symmetric with
respect to the queries, the asymmetry is gradually reinforcedwhile
one of the embeddings is evolving towards EA and the other one
towards EO. This can be observed from the reduction of affiliation
uncertainty as the optimization progresses.

Similarly, we can define the affiliation uncertainty metric for
non-group optimization as:

Un =
1

|T |
∗

∑
T (i,j,θ )∈T

min(α(i,j,θ )
1 , α

(i,j,θ )
2 )

max(α(i,j,θ )
1 , α

(i,j,θ )
2 )

, (7)

where α
(i,j,θ )
1 and α

(i,j,θ )
2 are the attribute inference variables asso-

ciated with EA and EO for tuple T (i, j, θ ). Un is also plotted in Fig. 5.
Un also reduces as the optimization progresses, which shows the
attribute inference variables are somewhat effective without the
groupoptimization. Still, the groupoptimization reduces affiliation
uncertainty more effectively than the non-group version.

6. Experimental results

We implement our algorithm with Tensorflow (Abadi et al.,
2015). In Eqs. (4) and (5), instead of directly optimizing αs to satisfy∑

sαs = 1 and α
q
s > 0, we let αs = softmax(βs), and optimize βs

without constraints. We use Adammethod (Kingma and Ba, 2014)
with learning rate 0.01 for the optimizations. The optimization
process will stop when the number of iterations is larger than a
threshold, or the loss function has no changes in a certain number
of iterations. All code and data will be opensourced.

In this section, we mainly focus on experimental evaluations
based on crowdsourcing data and synthetic data.We collect crowd
data fromAmazonMechanical Turk (AMT), and performour exper-
iments on the following two datasets. Our crowd data collection
details can be found in the supplementary material.

Chair Dataset contains 6,777 images rendered from the chair
category of ShapeNet (Chang et al., 2015). For this dataset, crowd
workers were required to cluster queries by considering one of the
following predefined attributes: arms, legs and back of the chairs.
This constraint allows us to verify qualitative accuracy. In total,
2,709 workers clustered 41,287 valid clustering queries, yielding
in 7,953,827 pairwise similarity tuples.

Poster Dataset is a film poster dataset with rich semantic infor-
mation, which contains 2,00 images collected by Kleiman et al.
(2016). For this dataset, we collect data without any instructions
on attributes. In total, 74 workers clustered 840 valid clustering
queries, yielding in 36,000 pairwise similarity tuples.

6.1. Multi-attribute embeddings from Crowd Data

For Chair Dataset, we recover appropriate embeddings of corre-
sponding attributeswithout the prior knowledge of the predefined
attributes that users were asked to consider. Fig. 6 shows the final
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Fig. 6. Recovering multiple attributes using our approach on the chair dataset with three attributes. The results show that the embeddings reflect specific attributes, from
left to right: arms, legs and back of and chairs.

recovered embeddings for three attributes. It can be seen that
from left to right each embedding reflects a separate attribute. For
example, in the left figure chairs are clustered according to their
arms, while those in a cluster show obvious differences in their
legs and backs. This demonstrates the ability of our method to
automatically distinguish and classify the query answers according
to their unknown attributes.

Fig. 7 shows the corresponding multi-attribute embeddings
from Poster Dataset. For the purpose of display clarity, we only
present 20 sampled images out of the total in the dataset. The
nature of images in the dataset and the unconstrained settings
of the experiment suggest the images may be categorized by the
crowd workers using a large number of attributes. Thus, each
embedding may reflect a mix of several attributes. Still, we can
identify a meaningful distinction between the three embeddings.
Embedding (a) reflects the appearance of the posters, in terms
of color, composition and the content of the poster. For example,
posters with white background (see marked images) appear close
to each other in this embedding, even though the movies belong
to various genres. Embedding (b) reflects external context such as
the genre of themovie or the actors that play in it. Note that horror
movies appear on the top right, sci-fi movies appear on the top
left, and family movies appear on the bottom. In embedding (c),
the distinction between animated movies and live action movies
takes precedence over other attributes, creating two tight groups
of movies, animated and non-animated.

6.2. Comparisons with (t-)MVTE

Our general approach to the problem is similar to the one
presented by Amid and Ukkonen (2015), aiming to deduce multi-
attribute embeddings from pairwise comparisons without con-
structing deep neural models. They define a heuristic indicator
function for the triplet embedding based on distribution assump-
tions of the underlying embedding spaces. Therefore, we conduct
an experiment to evaluate the effectiveness of our algorithm and
compare it with (t-)MVTE multi-view embedding algorithm.

We use six synthetic datasets with multiple attributes, as well
as different dimensions, as can be seen in Fig. 8. For example, 3D-2
is a set of three-dimensional points composed of two geometric
models that correspond to two-attribute distributions. Each 2D
data has 214 instances, while 1,600 instances for each 3D data.
600 and 4,800 clustering queries are randomly sampled from each
attribute in the synthetic 2D and 3D data, which are used to
produce triplets and grouped tuples. Triplets or grouped tuples
in each attribute are mixed together as input to (t-)MVTE or our
method for optimizing multi-attribute embedding.

Table 1
NDCG performance compared with (t-)MVTE algorithms on various synthetic
datasets.

AO AOB AOB8 3D-2 3D-3 3D-4

MVTE (%) 92.9 69.9 64.6 82.9 61.8 59.2
t-MVTE (%) 95.5 75.1 56.7 82.4 62.3 40.6
Ours (%) 95.8 94.8 96.3 83.2 83.7 85.3

Fig. 8 visualizes the qualitative multi-attribute embeddings re-
covered by (t-)MVTE and our algorithm. Compared with (t-)MVTE,
our algorithm performs better in mapping embedding positions
and preserving global distribution. Table 1 summarizes the NDCG
of the corresponding multi-embeddings based on ground truth.
Our algorithm outperforms (t-)MVTE and is more stable when
dealing with complex data of higher dimensions.

6.3. Application: Cross-attribute image retrieval

The multi-embedding spaces associate each image with a spa-
cial position in different attribute spaces. A query image may be
similar to different images in various attribute spaces. For a query
image, we can firstly embed it to the multi-embedding spaces and
retrieve similar images cross multiple attributes. Therefore, we
propose a cross-attribute image retrieval framework based on our
multi-attribute embeddings.

We leverage convolutional neural structure to learn a map-
ping between images and their positions in the multi-embedding
spaces. Our embedding positions are used as supervised annota-
tions for the training process. More specifically, for one specific
attribute embedding, the training data consists of a collection of
pairs, (Isi , P

s
i ), where Isi indexes an image i under an attribute space

s, and P s
i is its embedding position. Our convolutional model is a

function f that is received as input an image and is expected to out-
put its spatial position Pi. f is depended with network parameters
θ . Wemeasure the mapping error with a Euclidean loss function L:

Ls(⊆) =

∑
i

f (Isi ; θ ) − P s
i

2
. (8)

We adopt the network with AlexNet (Krizhevsky et al., 2012),
which might be replaced with more sophisticated networks.

We experiment our image retrieval application on the Chair
Dataset. The dataset is randomly separated into training and vali-
dation set, with 5,000 and 1,777 images respectively. We firstly re-
render training imageswith a solid color to leave out noises caused
by texture and shading. This schema enables us to achieve a higher
prediction accuracy in validation set.
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Fig. 7. Recovering multiple attributes using our approach on the poster dataset with unknown attributes. The results show that the embeddings are ordered under different
attributes: color and appearance (a), genre (b), animation/live action (c).

Fig. 8. Multi-attribute embedding visualization compared with (t-)MVTE algorithms on various synthetic datasets. Data points are smoothly mapped into continuous colors
by their indices. Our algorithm outperforms (t-)MVTE in preserving complex data distribution.

Given a new query image, our deep model can retrieve images
containing similar chairs in different attributes (e.g., chair arms,
legs and back). The retrieved images under different attributes
can be quite diverse in terms of semantics. Fig. 9 presents our
cross-attribute retrieval results. The query images are randomly
chosen from the validation dataset, while the retrieved images are
from the training dataset. It shows that our system can retrieve
different images in different semantic attributes. Taking (a) for
example, the first row shows retrieved images with similar arms—
that all of them are no arms; the second row presents neighboring
chairs with similar legs, in which their arm and back attributes are
quite different; while the third row shows retrieval feedbackswith
similar backs.

7. Conclusions

We have presented a method for multi-attribute embedding.
Themethod takes qualitativemeasures and solves an optimization
problem that embeds them into multiple spaces such that the
quantitative measures in the embedded spaces agree with the
qualitativemeasures. The optimization solves two sets of unknown
parameters simultaneously: one is the embedded coordinates of

the points and the other is the classification variables of the mea-
sure to the unknown attributes. We presented a group optimiza-
tion and showed its power to infer the attribute classification
and produce embedding coordinates. Our experimental results on
crowdsourced data demonstrate the competence of our method to
produce multi-embedding from inconsistent and redundant data.
Our method can also be applied to intuitive image retrieval by
turning on and off different attributes.

Limitations. Different similarity attributes may have different
popularity, but our method does not take this into account. In
addition, the number of different embeddings in ourmethod needs
to be manually set. While larger number of embeddings can better
reflect more attributes, there is a risk that they actually represent
noise or outlier measures. An interesting future work is to try and
differentiate inliers and outliers measures, and automatically pick
a suitable number of embedding spaces.

Future work. A possible future work is to try and differentiate
inliers and outliers measures, and automatically pick a suitable
number of embedding spaces. Another interesting future work is
to extend our method to sketch based image retrieval (Yu et al.,
2016). Since people often emphasize different aspects in sketches,
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Fig. 9. Top 8 nearest neighbors of query images (a) and (b) under three attributes. From top to bottom, we turn on arm, leg and back attribute respectively for retrieval task.

learning multiple similarity embeddings among sketches and real
world images may improve the effectiveness of SBIR.

Acknowledgments

This study was funded by National Key Research & Develop-
ment Plan of China (No. 2016YFB1001404) and National Natural
Science Foundation of China (No. 61602273).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.visinf.2018.09.004.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow:
Large-scale machine learning on heterogeneous systems. Software available
from tensorflow.org.

Agarwal, S., Wills, J., Cayton, L., Lanckriet, G., Kriegman, D., Belongie, S., 2007.
Generalized non-metric multidimensional scaling. In: Proc. of Int. Conf. on AI
and Statistics, San Juan, Puerto Rico.

Amid, E., Ukkonen, A., 2015. Multiview triplet embedding: learning attributes in
multiple maps. In: Proc.of ICML. pp. 1472–1480.

Bell, S., Bala, K., 2015. Learning visual similarity for product design with convolu-
tional neural networks. ACMTrans. Graph. 34 (4), 98:1–98:10. http://dx.doi.org/
10.1145/2766959.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender,
G., 2005. Learning to rank using gradient descent. In: Proceedings of the 22nd
International Conference on Machine Learning. ICML ’05, ACM, New York, NY,
USA, pp. 89–96. http://dx.doi.org/10.1145/1102351.1102363.

Chang, A.X., Funkhouser, T.A., Guibas, L.J., Hanrahan, P., Huang, Q., Li, Z., Savarese, S.,
Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F., 2015. ShapeNet: An information-
rich 3D model repository. CoRR. abs/1512.03012.

Chittilappilly, A.I., Chen, L., Amer-Yahia, S., 2016. A survey of general-purpose
crowdsourcing techniques. IEEE Trans. Knowl. Data Eng. 28 (9), 2246–2266.
http://dx.doi.org/10.1109/TKDE.2016.2555805.

Chopra, S., Hadsell, R., LeCun, Y., 2005. Learning a similaritymetric discriminatively,
with application to face verification. In: Proc. of CVPR, Vol. 1. IEEE, pp. 539–546.

Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher, S.,
MacKinnon, I., 2008. Novelty and diversity in information retrieval evaluation.
In: Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’08, ACM, New York,
NY, USA, pp. 659–666. http://dx.doi.org/10.1145/1390334.1390446.

Douze, M., Ramisa, A., Schmid, C., 2011. Combining attributes and fisher vectors
for efficient image retrieval. In: Proceedings of the 2011 IEEE Conference on
Computer Vision and Pattern Recognition. CVPR ’11, IEEE Computer Soci-
ety, Washington, DC, USA, pp. 745–752. http://dx.doi.org/10.1109/CVPR.2011.
5995595.

Garces, E., Agarwala, A., Gutierrez, D., Hertzmann, A., 2014. A similarity measure
for illustration style. ACM Trans. Graph. 33 (4), 93:1–93:9. http://dx.doi.org/10.
1145/2601097.2601131.

Globerson, A., Roweis, S., 2005. Metric learning by collapsing classes. In: Proc. of
NIPS. MIT Press, Cambridge, MA, USA, pp. 451–458.

Gomes, R.G., Welinder, P., Krause, A., Perona, P., 2011. Crowdclustering. In: Proc. of
NIPS. Curran Associates, Inc., pp. 558–566.

Järvelin, K., Kekäläinen, J., 2000. IR evaluationmethods for retrieving highly relevant
documents. In: Proc. of SIGIR. ACM, New York, NY, USA, pp. 41–48. http://dx.
doi.org/10.1145/345508.345545.

ho Kim, K., Mac Aodha, O., Perona, P., 2018. Context embedding networks.
In: Computer Vision and Pattern Recognition, CVPR. CVPR ’18.

Kingma, D.P., Ba, J., 2014. Adam: Amethod for stochastic optimization. In: Proceed-
ings of the 3rd International Conference on Learning Representations, ICLR.

Kleiman, Y., Goldberg, G., Amsterdamer, Y., Cohen-Or, D., 2016. Toward semantic
image similarity from crowdsourced clustering. Vis. Comput. 32 (6–8), 1045–
1055.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Wein-
berger, K.Q. (Eds.), Advances in Neural Information Processing Systems 25.
Curran Associates, Inc., pp. 1097–1105.

Li, M., Fish, N., Cheng, L., Tu, C., Cohen-Or, D., Zhang, H., Chen, B., 2018. Class-
sensitive shape dissimilarity metric. Graph. Models 98, 33–42.

Li, J., Jurafsky, D., 2015. Do multi-sense embeddings improve natural language un-
derstanding? In: Conf. on Empirical Methods for Natural Language Processing.

Liu, Y., Liu, Z., Chua, T.S., Sun, M., 2015. Topical word embeddings. In: Proc. of AAAI.
AAAI Press, pp. 2418–2424.

O’Donovan, P., Lı̄beks, J., Agarwala, A., Hertzmann, A., 2014. Exploratory font se-
lection using crowdsourced attributes. ACM Trans. Graph. 33 (4), 92:1–92:9.
http://dx.doi.org/10.1145/2601097.2601110.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet large scale

https://doi.org/10.1016/j.visinf.2018.09.004
http://www.tensorflow.org
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb3
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb3
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb3
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb3
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb3
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb3
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb3
http://dx.doi.org/10.1145/2766959
http://dx.doi.org/10.1145/2766959
http://dx.doi.org/10.1145/2766959
http://dx.doi.org/10.1145/1102351.1102363
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb6
https://arxiv.org/abs/1512.03012
http://dx.doi.org/10.1109/TKDE.2016.2555805
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb8
http://dx.doi.org/10.1145/1390334.1390446
http://dx.doi.org/10.1109/CVPR.2011.5995595
http://dx.doi.org/10.1109/CVPR.2011.5995595
http://dx.doi.org/10.1109/CVPR.2011.5995595
http://dx.doi.org/10.1145/2601097.2601131
http://dx.doi.org/10.1145/2601097.2601131
http://dx.doi.org/10.1145/2601097.2601131
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb13
http://dx.doi.org/10.1145/345508.345545
http://dx.doi.org/10.1145/345508.345545
http://dx.doi.org/10.1145/345508.345545
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb15
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb17
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb18
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb21
http://dx.doi.org/10.1145/2601097.2601110


Q. Zeng et al. / Visual Informatics 2 (2018) 181–189 189

visual recognition challenge. Int. J. Comput. Vision 115 (3), 211–252. http://dx.
doi.org/10.1007/s11263-015-0816-y.

Tamuz, O., Liu, C., Belongie, S., Shamir, O., Kalai, A., 2011. Adaptively learning the
crowd kernel. In: Getoor, L., Scheffer, T. (Eds.), Proc. of ICML. ACM, New York,
NY, USA, pp. 673–680.

Veit, A., Belongie, S., Karaletsos, T., 2017. Conditional similarity networks. In: Com-
puter Vision and Pattern Recognition, CVPR, Honolulu, HI.

Wang, J., Do, H., Woznica, A., Kalousis, A., 2011. Metric learning with multiple
kernels. In: Proc. of NIPS. Curran Associates Inc., USA, pp. 1170–1178.

Wang, J., Kraska, T., Franklin, M.J., Feng, J., 2012. CrowdER: crowdsourcing entity
resolution. Proc. VLDB Endow. 5 (11), 1483–1494. http://dx.doi.org/10.14778/
2350229.2350263.

Wilber, M.J., Kwak, I.S., Belongie, S.J., 2014. Cost-effective hits for relative similarity
comparisons. In: 2nd AAAI Conference on Human Computation and Crowd-
sourcing.

Wu, Z., Giles, C.L., 2015. Sense-aware semantic analysis: A multi-prototype word
representation model usingWikipedia. In: Proc. of AAAI. AAAI Press, pp. 2188–
2194.

Xie, P., Xing, E.P., 2013.Multi-modal distancemetric learning. In: Proc. of IJCAI. AAAI
Press, pp. 1806–1812.

Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S., 2002. Distance metric learning, with
application to clustering with side-information. In: Proc. of NIPS. MIT Press,
Cambridge, MA, USA, pp. 521–528.

Yu, Q., Liu, F., SonG, Y.Z., Xiang, T., Hospedales, T., Loy, C.C., 2016. Sketch me that
shoe. In: Computer Vision and Pattern Recognition.

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb26
http://dx.doi.org/10.14778/2350229.2350263
http://dx.doi.org/10.14778/2350229.2350263
http://dx.doi.org/10.14778/2350229.2350263
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb30
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb30
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb30
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb30
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb30
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb30
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb30
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb30
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30040-8/sb32

	Group optimization for multi-attribute visual embedding
	Introduction
	Related work
	Group-based crowd queries
	Multi-attribute embedding
	Algorithm analysis
	Group optimization
	Attribute inference variables

	Experimental results
	Multi-attribute embeddings from Crowd Data
	Comparisons with (t-)MVTE
	Application: Cross-attribute image retrieval

	Conclusions
	Acknowledgments
	Supplementary data
	References


